

2023年10月 中国•上海 October 2023 Shanghai•China

更预保 更智能 更安呈 Greener Smarter Safer

Energy Management in the Sanitation sector A case study of Sewage Treatment in Brazil

Alberto J. Fossa Abrinstal - Brazil

Sabesp in numbers

- Founded in 1973 State of São Paulo
- Largest sanitation company in Americas
- Water supply and sewage collection and treatment in 365 municipalities
- Attending around 30million people
- 235 treatment plants and 539 sewage treatment plants
- 72.000 km water distribution network and 50.000 km sewers
- 8.500.000 water connections and 7.000.000 sewer connections

Sewage Treatment Process

Aruja Case Study

Power Consumption at Aruja

- Mechanized grating
 - 2 motors 0,55 kW (10 years old)
- Sandbox scrapers
 - 2 motors 0,37 kW (1 year old)
- Sand conveyor
 - 1 engine power equivalent 1.1 kW (1 year old)
- Aerators
 - 7 engines power equivalent 14,71 kW each (average 3 years old)

Power Consumption at Aruja

What needs to be done

Technology area contribution to global cumulative CO₂ reductions

IEA Energy Technology Perspectives 2017

But potentials are going unrealised

- Unrealised energy efficiency potential
- Realised energy efficiency potential

2/3 of the economica potential to improve energy efficiency remains untapped in the period to 2035

IEA World Energy Outlook 2012 – New Policies Scenario

Ad hoc approach to Energy management

Energy Performance a new "approach"

Barriers

- Difficulty in <u>measuring gains</u> (energy, economic and environmental)
- Lack of <u>knowledge about EnMS</u>
- Difficulty <u>collecting energy data</u>
- Absence or limitation of <u>resources</u> (human and financial)
- <u>Technical knowledge gap</u> on energy systems
- Lack of <u>market recognition</u> or incentives

Opportunities in Sanitation

- Increase awareness about sustainability
- Develop actions to <u>combat climate</u> <u>change</u> through energy issues
- Advancing the debate on <u>energy</u> <u>security</u>
- Seek new frontiers for <u>reducing</u> <u>operational costs</u>
- Act effectively on one of the highest cost items in the sector (<u>energy!</u>)

Opportunities to improve energy performance in WWTP

- Energy efficiency
 - Data monitoring and process control systems SCADA controlling sludge systems
 - Aeration systems (up to 40% of electrical demand) dissolved oxygen control
 - Replace old motors and use frequency inverters
- Emerging technologies and processes
 - Cultivation of bacteria + control of pH (savings about 25% in aeration systems)
- Power generation
 - Photovoltaic panels
 - Micro wind turbines
 - Methane generated in biodigesters

ABRINS

Gap analysis EnMS at WWTP Arujá

- EnMS (ISO50001) based on EMS (ISO140001) implemented
 - Scope and Energy Policy
 - Energy Planning
 - Operational Control
 - Verification

ABRINS

Compliance with EnMS requirements

Requirements group	No. of req.	Service			Rate of
		Total	Partial	Null	Service
4.1 - General requirements	3	0	1	2	17%
4.2 - Management responsibilities	19	0	0	19	0%
4.3 - Energy policy	9	0	0	9	0%
4.4 - Energy planning	29	5	7	17	29%
4.5 - Implementation and operation	37	10	21	6	55%
4.6 - Verification	30	13	5	12	52%
4.7 - Critical analysis by management	16	7	9	0	72%

Based on ISO 50001:2011 Main Requirements

Planning and activities for EnMS

- 6-7 months proposed schedule to implement EnMS requirements
- Development of energy policy and energy planning
- Improve operational controls and opportunities
 - Low cost activities
- Target to reduce energy consumption

Alberto J. Fossa diretoria@abrinstal.org.br

